If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36k^2-9=0
a = 36; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·36·(-9)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*36}=\frac{-36}{72} =-1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*36}=\frac{36}{72} =1/2 $
| -8(x+3)=48 | | (4x+5)/6=(7/2) | | 2(x+5-3=-(2x+1)+1 | | 18x+11=10x-17 | | 2(5-x)-(-2)(x-3=-(3x-4) | | 6m2+12m=0. | | x=2+7/8 | | 3x+9=32-x | | 15x-3=7x+20 | | X^2-4x-6=6 | | 9x=608 | | 4x-5+2(x-3)=12x+7) | | 5n-7n=1 | | x+3/8=19/24 | | 48x5=27x3=0 | | 3(1+w)=50 | | 0.05(1-x)+0.3x=0.03 | | n=10=120 | | (2/3)(x-3)=8 | | 48x5+27x3=0 | | 13x+9(7-12(-10x-14)=4(2x-8) | | 6x+14=3x-19 | | 12x=8x-7 | | 6x+14=6x−19 | | 13x+9(7-12-10x-14)=4(2x-8) | | 4.50x-7=4 | | x+84=120+x | | 20x-180= | | 17-3=7+y | | 7y+12=4y-6 | | 7(1-x)+2=-9 | | 5*25^2x+3=(1/125)^1-x |